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Objective: Employ parallel computers to better understand how fracture of  

land ice affects the global climate. Fracture happens e.g. during

• the collapse of ice shelves,

• the calving of large icebergs, and 

• the role of fracture in the delivery of water to the bed of ice sheets. 

Ice shelves in Antarctica:

Fracture of ice 

Larsen ‘B’ diminishing shelf
1998-2002
Other example: Wilkins ice shelf 2008

Amery ice shelf Glacial hydrology
(Source: http://www.sale.scar.org)



Classical FEM approach to fracture mechanics

• Mesh conforms to crack boundaries

• Crack propagation � remeshing at each step

• Requires fine mesh for tip singularities

• Mesh smoothing for ‘ugly’ elements

Computational Modeling of Fracture

eXtended Finite Element Method (XFEM)*

* Belytschko & Black (1999), Moës et al. (1999)

• Base mesh independent of crack geometry

• Crack propagation � adding “enriched” DOF 

with special basis functions to existing nodes

• Number of DOFs change, mesh does not



Displacement approximation (shifted basis form.)

XFEM Formulation for Cracks

Jump Enrichment Tip Enrichment (brittle crack)

Bubnov-Galerkin method: use identical approximation for test function

� Symmetric global system

Current implementation: bi-linear, Lagrange polynomials, quad4 elements



• Oscillatory components of error are 
reduced effectively by smoothing, but 
smooth components attenuate slower

• � capture error at multiple resolutions 

using grid transfer operators R[k] and P[k]

• In AMG, transfer operators are obtained 
from graph information of A

• Interpolation complements relaxation

Multigrid principles

• iterative smoother on finest and
intermediate levels

• direct solve at the coarsest level

solve Au=b using recursive multilevel V Cycle:

• Interpolation complements relaxation



‘Standard’ SA-AMG for fracture problems

nDOF = 5552

No multigrid

Smoothed 
Aggregation
AMG

nDOF = 5552
nnz = 101004

Possible issues:

• Aggregation

– Aggregates should not cross crack 

• Nullspace

– Elasticity: 3 ZEMs

– Uncoupled domains: 6 ZEMs? or more?

• Assumption of 2 unknowns per node fails

– 2, 4, or 10 DOFs per node



Distinct region representation

XFEM: modified shifted enrichment

K M

FEM
1 2,3 4,5 6

crack

1 2 3|4 5 6
Phantom node approach

1 2,4 3,5 6



Aggregation for phantom nodes: 1D

Level 1

Aggregates seemingly overlap, but are not connected on any level!

Level 2, …



Transformation

Do XFEM developers have to use the phantom node approach? No!

XFEM: modified shifted enrichment Phantom node approach

For each node I with jump DOFs:

G
• is extremely sparse,
• is simple to produce,
• transformations can be processor-local, and
• exists for higher order Lagrange Polynomials and multiple dimensions.

(similar: Menouillard 2008, …)



Aggregation for phantom nodes: 2D

Standard DOFs only Standard + Phantom DOFsMesh + BC + Enrichment

(  )* � sym. rev. Cuthill-McKee permutation for visualization

Modified shifted enrichment Phantom node approach

Standard DOFs only Standard + Phantom DOFsMesh + BC + Enrichment



Prelim. results for jump enrichments only

Shifted enrichment

Phantom node

CG preconditioned with AMG

OC: 1.28-1.40

If one wants to use the 
standard graph-based 
aggregation, then using
Phantom node setup is crucial!



NullSpace for Jump & Tip Enrichments

Nullspace for phantom node setup

• Standard DOFs are treated as usual

• Phantom DOFs are treated like Standard DOFs

1   2    3
…

1   0  -y_I
0   1   x_I

… 

2D Elasticity problem has 3 Zero Energy Modes (ZEMs):

• Phantom DOFs are treated like Standard DOFs

• Extra tip DOFs don’t contribute to rigid body motion

– Put 0 into their respective rows

� no coarse level contribution in prolongation & restriction

� smoothing only on finest level (fine scale feature) 



Smoothing

• Finest Level: Use special tip smoother       in addition to standard 
(Block-) Gauss-Seidel smoothing

– Tip smoother: direct solve for each small tip block

– Pre-smoother                      - Post-smoother

Reason for special smoothing:
• dense blocks (40x40 for quad4)
• high condition number

– Pre-smoother                      - Post-smoother

• All coarser levels: standard (Block-) Gauss-Seidel

• Coarsest Level: standard direct solve

Pre-Post-smoother symmetry is important



Numerical Results for full XFEM system

CG preconditioned
with AMG

Special tip smoother

Operator complexity: 1.28-1.40

Special tip smoother
is essential to deal
with tip enrichments!



Concluding Remarks

Standard SA-AMG methods can be used, if proper input is provided!

Key components:

– System matrix must be in phantom-node form 

• Either you already have it, (voids, fluid-structure interaction, …) , or

• do a simple transformation

– Adapt nullspace with zero entries for extra tip DOFs– Adapt nullspace with zero entries for extra tip DOFs

– Two-step smoothing on finest level

Future Directions

•What happens to tiny element fractions (conditioning)?

• 3d implementation


